Par allelization of NAS Benchmarks for Shared Memory
Multiprocessor s

Abdul Waheed and Jerrya‘r’lT
NAS Technical Report NS-98-010 March ‘98

{waheed,yan}@nas.nasa.gov
NAS Parallel Tools Group
NASA Ames Research Center
Mail Stop T27A-2
Moffett Field, CA 94035-1000

Abstract

Thispaperpresentour experience®f parallelizing the sequentialmplementatiorof NAS

bendmarks using compiler directiveson SGI Origin2000 distributed shared memory
(DSM) system.Porting existing applicationsto new high performanceparallel and

distributed computing platforms is a challenging task. Ideally, a user develops a

sequential version of the application, leaving the task of porting the code to

parallelizationtoolsand compiless. Dueto the simplicity of programmingshaed-memory
multiprocessos, compilerdevelopes haveprovidedvariousfacilities to allow theuseis to

exploit parallelism. Native compiless on SGI Origin2000 support multiprocessing
directivesto allow usess to exploit loop-level parallelismin their programs.Additionally,

supportingtools can accomplishthis processautomatically We experimentedwith these
compiler directivesand supportingtools by parallelizing sequentialimplementationof

NAS bendimarks.Resultsreportedin this paperindicate that with minimal effort, the

performance gain is compasble with the hand-pasallelized, carefully optimized,
messge-passing implementations of the same berarks.

1 MR]J Technology Solutions, Inc., NASA Contract NAS2-14303, Moffett Field, CA 94035-1000

1 Introduction

Distributed Shaed Memory (DSM) systemsare becomingincreasinglypopularin high performance
computing. Such systems can be considered scalable alternatves of corventional Symmetric
Multiprocessos (SMPs) due to distributed memory Additionally, DSM systemsoffer the ease of

programmingdue to a global addressspacessimilar to SMPs. There are at leastthree programming
paradigmghat can exploit parallelismofferedby a DSM system:(1) explicit message-passin¢?) data-
parallelism;and(3) compilerdirectedmultiprocessingExplicit message-passirajlows the usersto write

parallel programswith greater control over communication.This technique often involves domain
decompositionsuchthat eachprocessoiin the systemworks on a part of the entire programdatain a

Single Program, Multiple Data (SPMD) paradigm. Intermediate results and synchronizationsare
accomplishedthrough commonly used message-passingjbraries, such as MPI [8]. Data-parallel
programmindanguagesllow the usersto write SPMD programswithout worrying aboutcommunication,
which is handledby the compilerandits runtime system.The main sourceof parallelismis the program
data, which can be distributed among different processorsn a variety of ways. Data distribution is

controlled through compiler directives. High PerformanceFortran (HPF [5]) is a standardfor these
directives that hae been used byeral compiler deeclopers.

Both message-passiranddata-parallelisnfiorce a userto developaparallelalgorithm,whichis acomple

andchallengingtask.ldeally, a userwould lik e to develop sequentiatodefor a givenapplication Jeaving

the taskof porting the codeto parallelizationtools and compilers.Due to the simplicity of programming
DSM systems,compiler developershave beeninvestigating different techniquesto exploit parallelism
directly for such systems.This processcan be accomplishedautomaticallywith a compiler or through
somehintsprovided by the userto the compiler[11]. Someexamplesof automatigparallelizatiortoolsthat
transformsequentiacodeto parallelcodeby insertingparallelizationdirectives supportedby the native

compilers include: SUIF [2], Polaris [12], and KAP [7].

In this paper we presentour experiencesof using native parallelizationand optimizationtools on SGI

Origin2000. Origin 2000 is a DSM system with a cadie-coheent Non Uniform Memory Access
(ccNUMA) architecture Eachnodeof the systemtypically consistsof two R10000processorsvith two

levels of separatedataand instructioncachesfor eachprocessorand512 MB of main memoryshared
betweentwo processorson the node. Multiple systemnodesare connectedin a hypercubetopology
througha high speednetwork. Native toolsthatareof interestto our parallelizationeffort include: Power
Fortran Acceleator (PFA), which canautomaticallyinsertparallelizationdirectivesin sequentiatodeand
transformthe loopsto enhanceheir performanceParallel AnalyzerView (PAV), which canannotatethe
resultsof dependencanalysisof PFA andpresenthemgraphically;andMipsPro Fortran77compilerwith

MP runtime library to compile and executethe parallelizedcode.In additionto using thesetools, we

insertedsomedirective by handto assistthe compilerandtune the performanceWe experimentedwith

thesecompiler directives and supportingtools by parallelizing the sequentialimplementationof NAS

benchmarkg4]. Our resultsindicatethat with minimum effort, the performanceds almostasgoodasthe
hand-parallelized, carefully optimized, message-pasg&mngjon of the same benchmarks.

In section2, we outline the directives-basedarallelizationparadigm.Section3 provides detailsof our
parallelizationof NAS benchmark$or Origin2000.We comparehe performancef parallelizedcodewith

3

hand-parallelizedcode in Section 4. Section5 overviews related researchefforts. We discussour
conclusions in Section 6.

2 Directives-Based Parallelization M ethodology

A sequentiaprogramis first analyzedo discover: (1) loopsthatarethe mainsourceof parallelism;and(2)
ary dependencieamongdifferentloop iterationsthat inhibit parallelizationof that loop for the sale of
correctnessBasedon this analysis,it may be possibleto modify the code to remove dependencies.
Parallelismis expressedimply by insertingappropriatecompilerdirectivesbeforealoop[9,11]. As Figure
1 indicates this is essentiallyaniterative processof modifying the loop nestsin the sequentiatodeuntil
mostof the computationallyexpensve loopsareparallelized Finally, the parallelizedcode(i.e., sequential
codewith compilerdirectives)is compiledandlinkedwith appropriateuntimelibrariesto executeon the

talget system.
Directive
insertions
Performance
evaluation <

Figure 1. General methodology of parallelizing sequential code for shared-memory multiprocessors
using compiler directives.

Code
modifications as
needed

W Parallel code for

Sequential code an SMP system

Directives-basegbarallelismis supportedoy the MP runtimelibrary on Origin2000,which implementsa
fork-and-join paradigmof parallelism.A masterthread initiates the program, createsmultiple slave
threads scheduleghe iterationsof parallelizedloops on all the threadsincluding itself, waits for the
completionof a parallelloop by all the slave threads,and executessequentialportionsof the program.
Slave threadsmustwait for work (i.e., for partsof subsequenparallelloops)while the masterthreadis
executing a sequential portion of the code.

3 Parallelization of Sequential NAS Benchmarks

NAS benchmarksconsistof several ComputationalFluid Dynamics (CFD) kernelsand applications,
frequentlyusedto solve systemsof partial differential equationsthat model the dynamicsof a physical
systemWe selecffive of theseébenchmarksBT, SR CG, MG, andFT. Theserepresenimportantclasse®f
solvers for partial differential equationsusedin real CFD applications.Since, thesesolvers represent
interesting compute-intena parts of CFD applications, we selected them for this parallelization study

3.1 Automatic Parallelization

The SR CG, andMG benchmarksvereparallelizedusingPFA andPAV. Thisresultedin parallelizationof
most of the loops that consumedsignificantportion of the entire execution.Flow diagramsin Figure 2
represent thedy subroutines of benchmarks,$IG, and MG that were parallelized.

mg

adi Repeat n times o
Repeat n times > '¢
rprj3
compite_rhs prj
txinvr ¢
v -
X_solve *
-, v cg interp
y_solve Repeat n times | ¢
v
z_solve resid
conj_grad ¢
add psinv

@) (b) (©
Figure 2. Code structure of sequential NAS benchmarks: (a) SP; (b) CG; and (c) MG.

SPis anapplicationbenchmarkThe SPcodesolvesa ScalarPentadiagonal systemof equationgesulting
from approximatelyfactored,implicit, finite-differencediscretizationof the Navier-Stokes equationsin
three dimensions.The solution is basedon an Alternating Direction Implicit (ADI) algorithm. This
algorithm solves three sets of uncoupledsystemsof equationsin %, y, and z directions. The main
subroutinesof SP as illustratedin Figure 2(a), contain one or more loops whoseiterations could be
distributed among multiple processors.

CG is a kernelbenchmarkbasedon a ConjugateGradient methodto computean approximationto the
smallesteigen value of a large, sparse,symmetric positve definite matrix. This kernel implements
unstructuredyrid computationandcommunicationsThe CG code(seeFigure 2(b)) consistof only one
major loop that \&s identified and parallelized automatically byAPF

MG usesa Multi-Grid methodto computethe solutionof the three-dimensionascalarPoissonequation.
Four critical subroutineghatusemulti-grid operatorson a grid performthe V-cycle algorithm(seeFigure
2(c)): thesmoother(psinv); theresidualcalculation(resid; theresidualprojection(rprj3); andthetrilinear
interpolationof the correction(interp). All four subroutinesxhibit fine-grainedoop-level parallelismthat
is detected by P&to parallelize this code.

3.2 Hand-Coding of Parall€elization Directives

PFA cannotautomaticallyparallelizeary significantnumberof time-consumingoops for FT and BT
benchmarkslueto two reasons(1) sourcecodeshavs complex dependenceamongiterationsof a loop
that require programmetinput to resohe; and (2) a potentially parallelloop containsa procedurecall,
which may or may not wa dependences on subsequent iterations of the loop.

PAV explainedwhy a specificloop was not parallelizedby PFA. For instance,BT is similar to SPin

structure(seeFigure3(b)) but therearesereralprocedurecallsembeddedh parallelizabldoopsof BT that
PFA couldnot handle.In addition,both benchmarksequiredmanualtransformatiorof severalloop nests
to be parallelized Datadistribution directveswere alsoaddedto improve the co-locationof computation
anddatafor thesetwo benchmarksAfter insertingparallelizationdirectivesby hand this parallelizedcode

was passedhroughPFA to obtainfurtherloop optimization.Flow diagramsn Figure3 representhe key
subroutines of benchmarks FT and. BT

. adi
Repeat n times N
ft v
Repeat n times R / X_solve
1 x_solve_cell ¢
solve
evolve x_backsubstitute r ¢
! 2 solve
fft y_solve_cell ¢
fits1 : add
l y_backsubstitute
ffts2 Ihsz |
checksum
z_solve_cell
ffts3 z_backsubstitute

@ (b)
Figure 3. Code structure of sequential NAS benchmarks: (a) FT and (b) BT.

FT is the computationalkernel of a three dimensionalFast Fourier Transform (FFT)-basedspectral
method.The codecomputesFFT in the first, secondandthird dimensionsby calling subroutinedfts1,
ffts2, and fts3, respectiely (see Figure 3(a)).

BT is an applicationbenchmarkThe codeis similar to the SP code (seeFigure 3(b)). It solvesa Blodk
Tridiagonal system of equationsresulting from approximately factored, implicit, finite-difference
discretizationof the Navier-Stokes equationsin three dimensions.The solution is basedon an ADI

algorithm that solves three sets of uncoupled,block tridiagonal systemsof equationsin x, y, and z
directions.The main subroutinesof BT containloops with calls to three main parts of solver in each
direction: formation of left-hand side (Ihz); forward elimination for one block (solve_cell, and
backsubstitution(badksubstitutg Thesesubroutinesoffer sufficient parallelismthat was exploited by
insertingparallelizationdirectivesfor key loops.A BLOCK datadistribution in the z-directionwas also
added to impree the data locality

In orderto manuallyparallelizeFT andBT, thefollowing stepsweretaken: (1) inter-procedurabnalyses;
(2) loop nesttransformationsand(3) locality optimizations.Sincewe considerthesestepsto be generic
andessentiato parallelizeary realapplicationfor a shared-memorynultiprocessqrwe presentdetailsof
these steps in the rest of this subsection.

3.2.1 Inter-Procedural Analysis

Applicationswritten in a structuredmanneroften contain subroutinecalls within someloops that are
potentiallyparallelizablelt is saferfor anautomaticparallelizationtool to assumehatthe subroutinecalls
embeddedn aloop arenotindependento avoid incorrectbehaior. Severaltools provide inter-procedural
analysishowever, it is overly time-consumingor even modestlylarge codes.PFA doesnot provide inter
proceduralanalysissupport. Unfortunately it is not possibleto leave the loops with subroutinecalls
unparallelizedecausehey mayrepresena significantportion of the entireexecutiontime. In suchcases,
the useris responsibldgo performthe inter-procedurabnalysisto decidewhetheror not aloop containing

subroutine calls should be parallelized.

Figure4(a)presentsatypical block of codetakenfrom FT. It consistf aloop nestwhichis parallelizable
exceptfor a subroutinecall. Eventhoughthe outerloop doesnot have ary dependenciest is not possible
to determinewhetherthe subroutinecalls are independenfrom one iteration to anotherwithout inter
procedurabnalysisThisis atypical situationwith numerousodeblocksof FT andBT. In thosecasesye
analyzedependenciesf the subroutineon subsequenterationsof the outerloop in the calledfunction. If
thereare no dependenciesye manually parallelizethe outer loop, as shavn in Figure 4(b). Note that
C$DOACROCSS is the SGI Brtran77 loop parallelization direeé [9].

dok=1,d(3) c$doacross local(k,jj,j,i,y)
do jj = 0, d(2) -ffblock, fitblock dok=1,d(3
do j = 1,ftblock do jj = 0, d(2) -ffblock, fitblock
doi=1,d(1) do j = 1,ftblock
v(j,i,1) = x(i,j+jj,k) doi=1,d(1)
edndddo y(j.i,1) = x(i,j+jj,k)
enddo . ; enddo
call itz (is, logd(1), Inter-procedural analysis enddo
> d(1), y(1,1,2)) > call ditz (is, logd(1),
do j = 1,ftblock > d(1),y(1,1,2))
doi=1,d(2) do j = 1,ftblock
xout(i,j+jj,k) = y(j,i,1) doi=1,d(1)
enddo xout(i,j+jj,K) = y(,i,1)
enddo enddo
enddo enddo
enddo enddo
enddo
@) (b)
Figure 4. An example of inter-procedural analysisduring the parallelization of FT.

3.2.2 Loop Nest Optimization

It is customaryto parallelizethe outermost loop in a loop nestto distribute substantialamount of
computationto multiple processorslndicesin a loop nestare usually chosento optimize the locality of
dataaccessedrom the loop. In mary casessomedataaccessemay have dependencedueto the outer
mostloop index while thereareno dependenciegueto atleastoneotherloopindex. For suchcasesit may
be possibleto transformthe loop nestsuchthat the index with no dependencebecomeshe outermost
index to allow efficient parallelizationof the entireloop nest.The userhasto make a trade-of betweerthe
performancegain due to parallelizationof the loop nestand the performancedegradationdue to non-
optimal data localityPFA and maw other parallelization tools lga such decisions to the user

Figure5(a) presents block of codetakenfrom BT, which of aloop nestwith onedependencdueto the
outermosindex k. For agivenvalueof k, anaccesdo thearrayelement hs(n, i, j , k+1) mayrequire
anon-localmemoryaccesslf we parallelizethe outermosioop, thenaccesse® thearrayr hs will need
to be synchronizedvith otherprocessorso ensurecorrectnessConsideringhatFortranstoresarraysin a
column-majoifashiontheloopindicesarein anorderthatoptimizesdatalocality. However, notethatthere
is no dependencedueto ary otherloop indices.Thereforejnterchanging andk indiceswill resultin a
minimum penalty of non-optimal data locality comparedto ary other permutationof loop indices.
Additionally, we can now parallelize the outermost loop and the performancegain due to more
computation within the outer loopfeéts the cost of non-optimal data locality (see Figure 5(b)).

do k=1,grid_points(3)-2
do j=1,grid_points(2)-2
do i=1,grid_points(1)-2
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,j,k) = rhs(m,i,j,k)
- Ihs(m,n,cc,i,j,K)*rhs(n,i,j,k+1) e—
enddo
enddo
enddo
enddo
enddo

@

c$doacross local(j,k,i,m,n)
do j=1,grid_points(2)-2
do k=grid_points(3)-2
do i=1,grid_points(1)-2
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,j,k) = rhs(m,i,j,k)
- lhs(m,n,cc,i,j,k)*rhs(n,i,j,k+1)
enddo
enddo
enddo
enddo
enddo

(b)

Figure 5. An example of loop nest optimization during parallelization of BT.

3.2.3 Data L ocality Optimization

An importantperformanceconsideratiorfor a DSM systemis to locatedatacloseto the computationto
obtainreasonabl@erformanceNon-localmemoryreferencesandfalse-sharingirethe main datalocality
bottlenecksthat affect most of the shared-memoryarallel programs.SGI Fortran77compiler supports
datadi stri buti on and dataaffi nity directives to improve the locality of data closeto the
computation[9]. This datadistribution is differentfrom that supportedoy data-parallelanguagesData-

parallellanguagesupportthe distribution of individual el

ementf arrayson to differentnodes However,

the data distribtion directives here support the distnifion at a coarse granularity of pages of memory

Figure 6(a) shavs an example code taken from BT where datadi stri bution andaffinity
directives were usedto co-locatedatawith computation.The BLOCK distribution was usedalong one
dimensionof arrayr hs with theaf fi ni t y clause(seeFigure6(b)) to ensurehe co-locationof specific
pages of data with the computation. This significantly imgddts performance (see Section 4).

c$doacross local(k,j,i,m,n)
do k=1,grid_points(3)-2
do j=1,grid_points(2)-2
do i=grid_points(1)-2,0,-1
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,j,K) = rhs(m,i,j,k)
- lhs(m,n,cc,i,j,k)*rhs(n,i+1,j,k)
enddo
enddo
enddo
enddo
enddo

—_

(@)

*

c$distritute rhs(*,*,*,BLOCK)
c$doacross local(k,j,i,m,n)
c$&, afinity(k) = data(rhs(m,i,j,k))
do k=1,grid_points(3)-2
do j=1,grid_points(2)-2
do i=grid_points(1)-2,0,-1
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,j,k) = rhs(m,i,j,k)
- lhs(m,n,cc,i,j,K)*rhs(n,i+1,j,k)
enddo
enddo
enddo
enddo
enddo

(b)

Figure 6. Co-location of data with computation for parallelizing BT.

4 Evaluation of Parallelized Code

We evaluatethe parallelizedcodefrom two perspecties:performancendlevel of effort. We quantitatvely

analyzethe performanceof directives-basedarallelizedprogramsby comparingtheir executiontimes
with the hand-parallelizedand optimized implementationsof the same programs.In addition, we
gualitatvely evaluate the level of effort to parallelize sequential code using shared-memory
multiprocessing direates.

4.1 Compar ative Performance

NAS benchmarkswere originally written as a suite of paperand-pencilbenchmarksto allow high-
performanceomputingsystemvendorsandresearchert developtheir own implementationgo evaluate
specificarchitecture®f theirinterest4]. NAS alsoprovidesits own of hand-parallelizednessage-passing
implementationof the benchmarkdasedon MPI message-passidgrary [10]. This implementationis
carefully written and optimized for a majority of existing high performancecomputing platforms.
Therefore we comparethe performanceof our directive-basedmplementatiorof NAS benchmarkswith
the MPI-basedhand-parallelizedmplementationfor Origin2000. ClassA benchmarkswere used for
comparisons reported in this subsection.

Figure7 presentshe comparisorbetweerautomaticallyparallelizedmplementation®f SBR CG, andMG
with the hand-parallelizedmplementationsof the same.For CG and MG, the performanceof two
implementationss comparableHowever, the performancef directives-basegarallelizedSPdegradesas
the numberof processorincreasedeyond eight while executiontime for the MPI-basedmplementation
continuesto reducewith the numberof processorsThis differenceis primarily due to superiordata
placemenbf thehand-parallelize@Presultingfrom afiner granularityof datadistribution. As thenumber
of processorincreasesthe amountof dataownedby a processoreducesproportionately This resultsin a
bettermemory systemperformance For the directives-basedmplementationdatais distributed at the
granularityof pages.Therefore asthe numberof processoréncreasemultiple processoriave to access
datafrom pageghatthey do not own locally, which adwerselyimpactthe overall executiontime. In caseof
CG andMG, datalocality doesnot becomea bottleneckdueto comparatiely smallersize of codewith
smaller number of memory accessesTherefore, performanceremains comparablewith the hand-
parallelized implementations of CG and MG.

450 . 7 F H
e x—PFA-parallelized x—PFA-parallelized . x—PFA-parallelized
r N op . q .
§ o0—Hand-parallelized é o—Hand-parallelized | | § wof o0—Hand-parallelized
L2 2))
D 1500F [} | @ sof
S £ 1S
= =] 15 aof
5 1000 5] 5 30F
5 5 5
[8) (&) 1 O
(] Q Q 201
X 500+ 4 4 X
W ni i
10
5 s m I 2 2 S S S R - TR oz 4 & 5 10 12 1 16
Number of processors Number of processors Number of processors
() SP (b) CG () MG

Figure 7. Performance comparison of automatic shared-memory multiprocessing dir ectives-based
paralldization of SP, CG, and MG benchmarkswith M Pl-based, hand-parallelized and -optimized
current versions of the same benchmarks. Theseresults are based on Class A benchmarks.

Figure 8 presentdhe comparisorbetweendirectives-basegarallelizedversionsof FT and BT with the
hand-parallelizedVPl-basedversionsof the same.n both the casesthe performancemproveswith the

9

numberof processorsln caseof FT, the MPI-basedmplementatiorprovesto be superiorto the shared-
memoryimplementatiordueto dataplacementin caseof BT, thedatalocality wasmeticulouslytunedfor
almostall the parallelizedloopsto ensurethat eachloop iterationis scheduledat a processothat owns
elementf anarrayaccesseduringthoseiterations.Consequentlythe performancef BT is comparable
to its hand-parallelized implementation.

140 T T T T T T 3500

x—Directive-parallelized _ .
1201 . 30001 x—Directive-parallelized
o—Hand-parallelized)
— o—Hand-parallelized
g 100+ 8 2500
& &
]
] £ L
E 80 £ 2000
= o
S eop ‘E s00f
3 8
Q 40 5 1000
o i
201 500
o ‘ ‘ ‘ ‘ ‘ ‘ 0 s s ‘ . ‘ ‘
0 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70
Number of processors Number of processors
(& FT (o BT

Figure 8. Perfor mance comparison of shared-memory multiprocessing directives-based parallelization of
FT and BT benchmarkswith M PI-based, hand-parallelized and -optimized current ver sions of the same
benchmarks. Theseresults are based on Class A benchmarks.

4.2 Level of Effort

Parallelizationof a sequentiahpplicationis a non-trivial taskthatoftenrequireshundredf man-hourof
effort [13]. For instance,hand-parallelizatiorof NAS benchmarksuite took more than ten man-years.
However, it is hardto separatéime spenton parallelizationandtime spenton tuning. It takesonly a matter
of minutesto automaticallyparallelizeSR CG, andMG usingnatie toolson Origin2000.For FT andBT,
about two weeks were spent to analyze and manually parallelize them using shared-memory
multiprocessinglirectives.For BT, anadditionalweekwasrequiredto tuneits performancendscalability
by insertingappropriatedataplacementirectives.It shouldbe notedthatthis included“learningtime” as
we were not intimately familiar with the application-domaindetails of these programsduring their
directives-basedgarallelization.Basedon our qualitatve assessmenthis level of effort is considerably
less than it wuld have been necessary to parallelize these benchmarks ugiigjtenessage-passing.

5 Reated Work

Several research efforts have focused on parallelizing sequential programs for shared-memory
multiprocessorsTheseefforts are becomingincreasinglyimportantdueto the revival of shared-memory
multiprocessorsvith improved scalability via distributed memoryand hardware cache-coherenc&UIF
compiler systemincorporatesvarious modulesthat can be usedto analyzethe sequentialprogram,
parallelizethe loops, distribute programarrays,and perform inter-proceduralanalysis[2,3]. Polarisis
anotherparallelizingcompilerthat cangenerategparallelizedcodefor SMPs[12,14]. CAPToolsis a semi-
automaticgparallelizationtool thattransformsa sequentiaprogramto a message-passimqggogramby user
directeddistribution of arrays[6]. Fortran-D[1] andvariousimplementation®f High Performancé-ortran

10

(HPF[5]) areexamplesof parallelizingcompilersthatwork for sequentiaprogramshat canbenefitfrom
dataparallelism.KAP [7] and PFA [9] are examplesof commercialparallelizationtools for SMPs.Our
experiencesvith mostof thesetoolsto parallelizesequentiaNAS benchmarksvill bereportedelsavhere.
Basedon this experienceandresultsreportedin this paper we considerthattoolsfor SMPsaresimpleto
learn and use and their performance is promising.

6 Discussion and Conclusions

This studyfocusedon parallelizationof sequentiaNAS benchmarksisingcompilerdirectivesfor shared
memorymultiprocessingon Origin2000.0ur experiencesndicatethat directves basedparallelizationis

simpleandrequiresminimal effort onthepartof usersby exploiting sharedaddresspaceof theunderlying
architecture.Performancecan be improved incrementallyby enhancingthe efficient use of memory
hierarchies, especially caches.

Parallelization of sequentialcode for shared-memonsystemshas beena thoroughly researchedrea.
Parallelizationtools are startingto becomepopulardueto the revival of shared-memonrarchitectureby

DSM systemsUseof directves-basegarallelismhasbeenlimited dueto portability issuesAlmost every

vendor of a shared-memongystemoffers its own extensionof Fortran77languagevia parallelization
directives. Thesedirectivesarenot portablefrom oneshared-memorgystemto another Recently several

vendorshave initiated a standardizatioefforts for shared-memorparallelizationdirectivesin theform of

OpenMPstandard11]. OpenMPhasproposedan API for compiler directives that can be usedacross
shared-memorylatforms.Introductionof suchstandardss a promisingdevelopmentthat may simplify

the portability issues.

An addedadwantageof directives-basegarallelismis that the programcanbe compiledas a sequential
programbecausealirectivesappearascommentdo the compilerwithout appropriateflag. Therefore there
is no needto maintaina separatesequentialversionof an application.Additionally, programsare not
requiredto be recompiledfor executing on a different number of processorsThe runtime system
determineglynamicallydetermineshe numberof processorandappropriatelyscheduleshe parallelized
loop iterations.

Directives-basegbarallelismis essentiallya fine-grainedparallelismthat works at the level of individual
loop iterations. This is greatly different from corventional coarse-grainegarallelismat the level of
processesr threadsWhenit is implementedcarefully; it ensuresnuch betterload-balanceeomparedo
the corventionalmessage-passiny data-parallekechniquesOn the otherhand,the useris requiredto
spendadditionaltime to ensureproperdatalocality to obtain performancehat is comparableto hand-
parallelized, message-passing based implementation.

References

[1] V. Adve, J-C.Wang,J. Mellor-Crumme, D. Reed,M. Anderson,andK. Kennedy“An Integrated
Compilationand PerformanceAnalysis Ervironmentfor Data Parallel Programs, Proceedingsof
Supecomputing ‘95 San Digo, CA, December 1995.

11

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

S.P. AmarasingheJ]. M. AndersonM. S.LamandC. W. Tseng,“The SUIF Compilerfor Scalable
ParallelMachines, Proceeding®f the Fifth ACM SIGPLANSymposiunon Principlesand Practice
of Parallel ProcessingJuly, 1995.

JenniferAnn M. Anderson,'AutomaticComputatiorandDataDecompositiorfor Multiprocessors,
TechnicalReport CSL-TR-97-719,Computer SystemsLaboratory Dept. of Electrical Eng. and
Computer Sc., Stanford Uarsity, 1997.

David Bailey, Tim Harris, William Saphir RobvanderWijngaart, Alex Woo, andMaurice Yarrow,
“The NAS PRarallel Benchmark 2.0Technical Report NS-95-020, December 1995.

High Performancd-ortran Forum. High Performancd-ortran LanguageSpecification Version1.0.
Scientific Programming, 2(1 & 2), 1993.

C. S. lerotheou,S. P. JohnsonM. Cross,andP. F. Leggett“Computeraided parallelisationtools
(CAPTools)—conceptualoverviev and performanceon the parallelisationof structured mesh
codes”Parallel Computing Vol.22, 1996, pp.163-195.

Kuck & Associates]nc., “ExperiencesWith Visual KAP and KAP/Pro ToolsetUnder Windows
NT,” Technical Report, No 1997.

Message &ssing Inteidice forum, “MPI: A Message-&ssing Inteidce StandardMay 5, 1994.

MIPSpio Fortran77Programmers Guide Silicon Graphics)nc. Availableon-linefrom: http://tech-
pubs.sgi.com/library/dyneeb_bin/0640/bin/nph-dymeehcgi/dynaveb/SGI_Deeloper/
MproF77_PG/@Generic__Boolka.

NAS Parallel Benchmarks. vailable on-line from: http://science.nas.nase/§oftware/NPB.

OpenMP:A ProposedStandad API for Shaed MemoryProgramming Oct. 1997.Availableon-line
from http://wwwopenmp.agy.

David A. Padua,Rudolf EigenmannJayHoeflinger Paul PetersenPengTu, StepherWeatherford,
andKeith Faigin, “Polaris: A New-GeneratiorParallelizingCompilerfor MPPS; TechnicalReport
CSRD # 1306, Unérsity of Illinois at Urbana-Champaign, June 15, 1993.

CherriM. Pancale, “The EmperorHasNo Clothes:WhatHPC UsersNeedto SayandHPCVendors
Need to Hegt, Supecomputing ‘95invited talk, San Digo, Dec. 3-8, 1995.

InsungPark, MichaelJ. Voss,andRudolf Eigenmann{Compiling for the New Generatiorof High-
Performance SMPsTechnical Report, No 1996.

12

13

NAS TECHNICAL REPORT

Title:

Par allelization of NAS Benchmarksfor Shared
Memory Multiprocessor s

Author(s):
Abdul Waheed and Jerry Yan

Two reviewers

Reviewers:

“I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document.”

must sign. Signed:
Name: _H. Jin
Signed:
Name: _M. Hribar
After approval, c I
assign KII?AS BranCh Chlef .
Report number.
Approved:
Date: NAS ReportNumber:

NAS-98-010

